Sex Determination and Sex-Linked Characteristics

Chapter 4

The Finest Technology in Gender Determination in Reptiles

L. Dewan

Lecture Outline

- Mechanisms of Sex Determination
 - Chromosomal
 - Genetic
 - Environmental
- Sex-linked Characteristics

Sex Determination

- Sexual reproduction is the results of meiosis and fertilization
- Sexual phenotypes (the sexes) male and female
 Differ in gamete size
- Sex determination mechanism by which sex is established
- Monoecious organisms with both male and female reproductive structures (hermphroditism)
- Dioecious organism has male or female reproductive structures
 - Chromosomal, genetic or environmental sex determination

In many organisms, sex is determined by a pair of chromosomes – sex chromosomes
 – Non-sex chromosomes = Autosomes

- Heterogametic sex gametes differ with respect to sex chromosomes
- Homogametic sex gametes are the same with respect to sex chromosomes

Concept Check 1

How does the heterogametic sex differ from the homogametic sex?

- a. The heterogametic sex is male; the homogametic sex is female.
- Gametes of the heterogametic sex have different sex chromosomes; gametes of homogametic sex have the same sex chromosome.
- c. Gametes of the heterogametic sex all contain a Y chromosome.
- d. Gametes of the homogametic sex all contain an X chromosome.

Concept Check 1

How does the heterogametic sex differ from the homogametic sex?

- a. The heterogametic sex is male; the homogametic sex is female.
- b. Gametes of the heterogametic sex have different sex chromosomes; gametes of homogametic sex have the same sex chromosome.
- c. Gametes of the heterogametic sex all contain a Y chromosome.
- d. Gametes of the homogametic sex all contain an X chromosome.

Chromosomal Sex-Determination

- XX-XO sex determination grasshoppers
 - XX female; homogametic
 - XO male; heterogametic
 - (O = absence of chromosome)

- XX-XY sex determination many species include mammals
 - XX female; homogametic
 - XY male; heterogametic

Fig 4.1

Fig 4.4

Chromosomal Sex-Determination

- ZZ-ZW sex determination birds, snakes, amphibians, butterfiles, isopods, some fish
 - ZZ male; homogametic
 - ZW female; heterogameic

- Haplodiploidy bees, wasps, ants
 - Unfertilized eggs, haploid set male
 - Fertilized eggs, diploid set female

Fig 4.6

Genetic Sex Determination

- Sex is genetically determined
 But no sex chromosomes
- Sex is still determined by genes

- As in chromosomal sex determination
- Genes at one or more loci determine sex of individual
- Found in some plants and protozoans

Environmental Sex Determination

- Limpets stack position determines sex
 - Bottom of stack female, top male
 - But males then become females and new individuals on top settle as males
 - Sequential hermaphroditism

Environmental Sex Determination

- Reptiles temperature during development
 - Turtles: warm temps produce females
 - Alligators: warm produce males

The Finest Technology in Gender Determination in Reptiles

Harry, would you knock it off? I thought we agreed that this batch would be girls!

Drosophila melanogaster – fruit fly

- XX-XY system
 - But presence of Y does not determine maleness
 - Genetic balance system sex determined by a balance between genes on autosomes and genes on X
- X : A ratio
 - X = number of X chromosomes
 - A = number of haploid sets of autosomes

ble 4.1	Chromosome complements and sexual phenotypes in <i>Drosophila</i>		
x- romosome mplement	Haploid Sets of Autosomes	X : A Ratio	Sexual Phenotype
хх	AA	1.0	Female
ХҮ	AA	0.5	Male
ХО	AA	0.5	Male
ХХҮ	AA	1.0	Female
XXX	AA	1.5	Metafemale
XXY	AA	1.5	Metafemale
ХХ	ААА	0.67	Intersex
хо	AAA	0.33	Metamale
XXX	AAA	1.3	Metafemale

MAL

ear normal; male le

emale but devel. lems 0.5-1, intersex weak, sterile

Results of the sex-determination in abnormal flies confirms that the Y chromosome does not determine sex in Drosophila

Concept Check 2

What will be the sexual phenotype of a fruit fly with XXYYY sex chromosomes and two sets of autosomes?

- a. male
- b. female
- c. Intersex
- d. metamale

Concept Check 2

What will be the sexual phenotype of a fruit fly with XXYYY sex chromosomes and two sets of autosomes?

- a. male
- b.) female
- c. Intersex

2X and 2 sets autosomes X:A = 2:2 = 1.0

d. metamale

Sex Determination - Humans

- XX-XY sex determination
- SRY gene on Y chromosome determines maleness

- Phenotypes from abnormal sex chromosome numbers illustrate the importance of *SRY*
 - Turner syndrome: XO; 1/3000 female births
 - Klinefelter syndrome: XXY, or XXXY, or XXXY, or XXYY; 1/1000 male births
 - Poly-X females: 1/1000 female births

Role of Sex Chromosomes - Humans

- X contains genetic info essential for both sexes
- 2. Male determining gene on Y choromosome
 Even if multiple Xs, still male
- 3. Absence of Y results in female
- 4. Genes affecting fertility on both X and Y
 - 2 copies of X required for female fertility
- 5. Additional X may upset normal development in both male and female

SRY – sex determining region Y

- Rare males with XX?
 - Small piece of Y attached to another chromosome
- Y chromosome becomes active at week 6
 - Gonad tissue develops into testes
 - Produce testosterone and Mullerian-inhibiting substance
- SRY codes for protein that binds and bends DNAaffects expression of genes encoding testes formation
- Other genes also important for fertility and sexual characteristics

Androgen-insensitivity Syndrome

- Appear as normal females but XY
 - Lack uterus, oviducts and ovaries
 - Testis in abdominal cavity, produce male testosterone levels
 - Androgen receptor is defective so cells insensitive to testosterone – develop female characteristics
 - Gene for receptor- on X so maternally inherited
- Genes for most secondary sex characteristics on autosomal chromosomes – key in control of expression

Inheritance of Sex-linked Characteristics

- Thomas Hunt Morgan first to explain
 - White eyes in Drosophila

Reciprocal cross

Reciprocal crosses – produced different results in F1 and F2 -consistent with X-linked inheritance

Fig 4.12

Non-disjunction

Chromosomes fail to separate in anaphase 1 – non-disjunction

Non-disjunction of 2Xs in XXY female flies

Confirms evidence of sex-linked gene for eye-color on the X chromosome

Experiment

Question: In a cross between a white-eyed female and a red-eyed male, why are a few white-eyed females and red-eyed males produced?

Methods

Hypothesis: White-eyed females and red-eyed males in F_1 result from nondistinction in an XXY female.

Conclusion: The white-eyed females and red-eyed males in the F₁ result from nondisjunction of the X chromosomes in an XXY female.

Red-green Colour Blindness

- Cone cell pigments (3)
 - Blue chromosome 7
 - Green and Red close
 together on X

"The green dot indicates it's just been sold to someone colour-blind..."

• Sex-linked, recessive trait

X⁺ - normal (wild-type) X^c – color-blindness

Fig 4.15

(a) Normal female and (b) Reciprocal cross color-blind male **P**generation **P**generation Normal-Normal-**Color-blind** color-vision \times Color-blind \times color-vision female male male female XcXc X^+X^+ XCY X^+Y Meiosis Meiosis Xc Gametes (X^c) Y Xc **X**⁺ Y Gametes (X⁺) X+ Fertilization **Fertilization F**₁ generation **F**₁ generation x^c Sperm Y χ+ Sperm γ X+Xc X+Xc X^+Y XCY Normal-Color-Normal-Normal-Eggs (X⁺) Eggs (X^c) colorblind colorcolorvision vision vision male female female male **Conclusion:** Females have normal **Conclusion:** Both males and females have normal color vision. color vision, males are color blind.

Colour-blindness

- Affected woman passes the trait to sons
- Affected men pass trait to grandsons through daughters but never to sons
- X-linked recessives may appear to alternate between sexes
 - Females in one generation
 - Males in next generation

Concept Check 4

Hemophilia (reduced blood clotting) is an X-linked recessive disease in humans. A woman with hemophilia mates with a man who exhibits normal blood clotting.

- 1) What is the probability that their child will have hemophilia?
- 2) What is the probability that their male child will have hemophilia?

Concept Check 4

Hemophilia (reduced blood clotting) is an X-linked recessive disease in humans. A woman with hemophilia mates with a man who exhibits normal blood clotting.

- What is the probability that their child will have hemophilia? 1/2
- What is the probability that their male child will have hemophilia? 100%

Dosage Compensation

- Different numbers of X chromosomes in males and females – potential problem.
 - the amount of protein produced by X-linked genes would differ in the two sexes.
 - Females would produce twice as much
 - This difference could be highly detrimental
- Dosage compensation:
 - e.g. in fruit flies double the activity of the X linked genes in males
 - Caenorhabditis elegans halve the activity of X linked genes in females
 - Placental mammals inactivate genes on one X

Barr body – condensed, dark staining body in the nuclei of female cats – inactive X chromosome

Females functionally hemizygous at cellular level – proteins from both Xs produced, but not in the same cell

Random X-inactivation occurs early in development – mitotic divisions (remains inactive) – can get spotty distributions

Z-linked Characteristics

- The same as in X-Y
 - Patter of inheritance in males and females is reversed
 - Females are heterogametic sex

Blue

7Ca+ w

(W

male ⁴

Y-linked Characteristics

- Only about 150 genes on Y
 - Many influence male sexual development and fertility
 - Function of most poorly understood
 - Useful for determining genetic relationships
 - e.g. origins of Lemba African tribe in South Africa and Zimbabwe – Judaic origin

Chapter 4 Questions

- Comprehension Questions: 1-15
- Application Questions: 16-18, 20-27, 29-34
- Challenge Questions: 42, 45