Integrating Microcontroller-Based Projects in a Human-Computer Interaction Course

Miguel Angel Garcia-Ruiz, Pedro Cesar Santana-Mancilla, Laura Sanely Gaytan-Lugo

Abstract—This paper describes the design and application of short in-class projects conducted in Algoma University's Human-Computer Interaction (HCI) course taught at the Bachelor of Computer Science. The projects were based on the Maker Movement (people using and reusing electronic components and everyday materials to tinker with technology and make interactive applications), where students applied low-cost and easy-to-use electronic components, Arduino Uno microcontroller boards, software tools and everyday objects. Students collaborated in small teams by completing hands-on activities with them, such as an interactive walking cane for blind people. At the end of the course, students filled out a Technology Acceptance Model version 2 (TAM2) questionnaire where they evaluated microcontroller boards’ applications in HCI classes. We also asked them about applying the Maker Movement in HCI classes. Results shown overall students’ positive opinions and response about using microcontroller boards in HCI classes. We strongly suggest that every HCI course should include practical activities related to tinkering with technology such as applying microcontroller boards, where students actively and constructively participate in teams for achieving learning objectives.

Keywords— Maker Movement, Microcontrollers, Learning, Projects, Course, Technology Acceptance.

I. INTRODUCTION

This paper describes how the Maker Movement [1,2] paradigm has been applied in a human-computer interaction (HCI) course from the University of X. The course has been offered for some years at undergraduate level, which includes small projects done in class by small teams composed of 4 students each. Until recently, the use of microcontroller boards was incorporated in our HCI classes. The course teaches the necessary foundational and theoretical components that students apply in the short projects, having practical hands-on activities. Before each project starts, students are taught HCI topics such as requirements elicitation, participatory design, low and medium-fidelity prototyping, and usability testing, among others. In the projects, students use electronic components, microcontroller boards and everyday objects to make digital prototypes of interactive devices.

Digital prototyping conducted in HCI classes is in line with other related projects and applications where students tinker with electronics and use physical computing in a constructionist learning environment [6]. In doing so, “digital fabrication” happens in class as part of students’ educational experiences [3]. This should in turn engage students, learning HCI topics by “making” [4]. This is also in line with the Maker Movement, a social movement in which people create interactive products using digital and analog electronics and discarded or commonly-used objects, often thinking out of the box and tinkering with inexpensive technology [8].

The HCI course has been successful, attracting many students every time it is offered. It is important to note that this is an elective (optional) course for all computer science students and other students who take science majors such as biology. This is enriching because this course has had students from different backgrounds and majors working collaboratively in the in-class projects, sharing fresh, novel and unique ideas and approaches for problem solving, tinkering with technology and learning about HCI.

II. IN-CLASS PROJECT STRUCTURE

We devised a structure for each project conducted in the HCI classes (see Table I). Many classes were devoted to conducting in-class projects. Not all classes included a project; in some of them students were taught theoretical components that supported project-based classes.

<table>
<thead>
<tr>
<th>Class section:</th>
<th>Duration (in minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief review of previous class.</td>
<td>5</td>
</tr>
<tr>
<td>Instructor’s description of the class’ learning objectives.</td>
<td>5</td>
</tr>
<tr>
<td>Instructor’s description of the main topic and a summary of background theory that supports the class project.</td>
<td>10</td>
</tr>
<tr>
<td>Instructor’s explanation of the project instructions, including its objective, materials, activities and expected outcomes.</td>
<td>5</td>
</tr>
<tr>
<td>Completion of project’s activities</td>
<td>55</td>
</tr>
<tr>
<td>Review of project’s outcomes done by the instructor and students. Class conclusions.</td>
<td>10</td>
</tr>
<tr>
<td>Total:</td>
<td>90 min.</td>
</tr>
</tbody>
</table>

III. IN-CLASS PROJECT EXAMPLE

The following is one example of an in-class project completed by 40 HCI students. Its instructions are shown in Appendix I.

1 Miguel garcia-Ruiz is with Algoma University, Sault Ste. Marie, P6A2G4, Canada (corresponding author, phone: 705-9492301X4312; email: miguel.garcia@algomau.ca).
Pedro Santana-Mancilla and Laura Sanely Gaytan-Lugo are with the University of Colima, Colima, 28040, Mexico (emails: psantana@ucol.mx, laura@ucol.mx).
The project objective is to build an electronic walking cane for blind users. The circuit attached to the cane has an ultrasonic sensor and a buzzer that buzzes when objects are blocking the user’s way. In this project, students draw a sketch on paper first about the overall cane design. Then, students draw an schematic diagram of the electronic components using Fritzing, an open-source software tool [21]. After that, students connect electronic components to an Arduino Uno microcontroller board [22] and to a breadboard, based on their Fritzing schematic (seen in Fig. 1). After that, students connect a battery to the circuit and test the whole prototype. The walking cane design used in this project was based on a project described in [12]:

Fig. 1 Diagram made in Fritzing showing the Arduino Uno microcontroller board and other electronic components used for building the interactive walking cane

Fig. 2 shows a student holding a walking cane made of a bamboo stick holding an Arduino Uno microcontroller board. The breadboard with electronic components, an ultrasonic sensor and a battery were also attached to it.

Fig. 2 Example of an interactive walking cane for blind people made by one of the teams

The 40 students have also completed other types of projects in class. For example, they have used the Makey Makey Classic [23], a microcontroller board in the form of a kit that emulates a computer keyboard and a mouse, where students connect everyday objects to it using alligator clips. The Makey Makey is connected to a computer via a USB cable, and uses closed-loop electrical signals to send the computer either keyboard strokes or mouse click signals when users touch the objects connected to the Makey Makey. Fig. 3 shows a student making simulated arrow keys using Play-doh (modeling clay) and also drawing keyboard’s arrow keys on paper. The objective of that project was to make a simple video game controller with simulated arrow keys. The students tested their prototypes by playing online video games on their laptops [5].

Using the Makey Makey in HCI classes has been very successful, motivating students to keep using the Makey Makey in more applications and in other in-class projects. In addition, some of the students wanted to buy the kit [11].

Fig. 3 A student making arrow keys and connecting them to the Makey Makey

IV. TECHNOLOGY ACCEPTANCE QUESTIONNAIRE AND RESULTS

Before we started to run the in-class projects, we set up two research questions:

- Do microcontroller boards (e.g. the Arduino Uno board) used in small class projects support learning of HCI concepts?
- Do microcontroller boards support Maker Movement activities such as digital prototyping conducted in class?

In order to answer those questions, we needed to see how students perceived the use of microcontroller boards and tinkering with technology in class. The Technology Acceptance Model (TAM) is a computer science theory that analyzes how people (users) come to accept and use an interactive digital product [9]. The TAM suggests that when users are presented with a new technology, some factors influence their decision about when and how they will accept and use it, including:

- Perceived ease-of-use (PEOU): "the degree to which a person believes that using a particular system would be free from effort" [9].
- Perceived usefulness (PU): “the degree to which a person believes that using a particular system would enhance his or her job performance” [9].

The TAM2 questionnaire [10] was used to measure both PEOU and PU, containing 26 questions and 7-point Likert scales, shown in Appendix II.

At the end of the course, students filled out a Technology Acceptance Model version 2 (TAM2) questionnaire where they evaluated the Arduino Uno board use in HCI classes. Results from the TAM2 questionnaire (see Fig. 4) indicated that most of the students perceived the Arduino Uno microcontroller board as easy to use and very useful in HCI classes. Results also shown that most of the students felt motivated to build interactive devices with the Arduino Uno board and would like to keep using it in other classes, and the board was easy to use and troubleshoot.
We verbally asked students at the end of the course their general opinion about the Maker Movement, in particular about its usefulness in HCI classes and how it relates to in-class activities and if it helped them learning about HCI. Most of the students positively answered our questions, which are related to the TAM2 questionnaire results.

The above results answered our research questions. Microcontroller boards used in small class projects are engaging and useful for supporting learning of HCI concepts and they do support Maker Movement activities in class.

V. LESSONS LEARNED

The following are some lessons learned after students completed the projects in class:

• Prepare all the materials for the in-class activities well in advance, before classes start. Make sure everything works, including electronic components, batteries, etc. Make sure that the microcontroller boards work.
• Plan ahead each class. Our classes have been carefully planned and structured (see Table 1).
• Make sure that all the students understand the project’s main objective.
• Strive for student safety first. We explain them that although the microcontroller boards and electronic components should be safe to use, it is always necessary to ensure that the electronic circuit is properly grounded and connected to the battery. The instructors also ensured that all the electronic components and tools were properly used.
• Ensure that students wear an electrostatic discharge (ESD) wrist band when they manipulate microcontroller boards and other static-sensitive components such as CMOS electronic components.
• Allow students to fail. This is an excellent opportunity for them to learn from their mistakes. At the end of the classes, sometimes we reviewed what went wrong in the projects and how to avoid that in future projects. We had some students from areas other than computer science, and they really appreciated that mistake feedback. In addition, they were collaborating and getting support from teammates with computer science background.

VI. CONCLUSION

Many students who took the HCI course were really motivated to keep using devices such as the Arduino Uno microcontroller boards. Some of them bought the Arduino board right after the course finished, to keep learning more about it.

We believe that every HCI course should include a number of in-class activities and/or assignments related to the Maker Movement. Exposing students to low-cost and easy-to-use technology such as electronic components and microcontroller boards in university courses is a powerful catalyst for students to use this technology in further courses and in extra-curricular activities, promoting how to tinker with technology.

Some students have suggested new and very interesting projects for further HCI courses, such as making an automated greenhouse.

We also believe that the HCI course has been popular because it seems that students recognize that the courses have practical and hands-on activities, not just theory, and they learn other topics such as an introduction to digital electronics.

Applying the Maker Movement in HCI courses has a number of educational and experiential learning benefits:

• During the course, students needed to think out of the box and work collaboratively for solving problems. For example, in one our courses students needed to securely fix an electronic circuit and a small battery to a bamboo stick, acting as a walking cane. Students tried and tested different materials, from duct tape to Velcro. The best (although not the prettiest) solution that they found was to use plastic cable ties. Students also suggested to use bamboo sticks to make the walking canes, which was proven to be a low-cost and effective solution. With these decisions and actions we confirm that the in-class project are related to the Maker Movement.
• The in-class projects with the microcontroller boards are a great opportunity for HCI students to know about the Maker Movement, which it was also explained and practiced in our classes. We believe that having meaningful and interesting hands-on activities with the microcontroller boards and other electronic components in class motivated students to keep participating in further maker activities.

APPENDIX I

Summary of in-class activity: Developing and testing an auditory UI (an “electronic” walking cane) for blind people.

Objective:

apply fundamental concepts of participatory and iterative design, as well as usability testing of an auditory user interface.

Introduction:

Participatory design involves and encourages end users, HCI specialists and developers in the collaboration of the design, implementation and testing of user interfaces of all kind. Iterative design is the “iterative development of user interfaces involves steady refinement of the design based on user testing and other evaluation methods.”[20]. It encompasses design methodologies based on a cyclic process of prototyping, developing, analyzing, testing and refining an user interface (UI) [7].
Usability testing is a systematic way to see how easy to use a UI is by testing it with real (end) users and other stakeholders such as developers, where users need to do some tasks in the UI. User feedback and usability testing data is obtained and used to improve the UI design iteratively. Usability goals address three usability components: effectiveness, efficiency and satisfaction of UI use.

Instructions:

Work in teams.

Today, you will develop and test the usability of an electronic walking cane for blind people using the Arduino Uno microcontroller board, an ultrasonic sensor and a buzzer. Blind people rely on their sense of hearing and the sense of touch (using a cane) for perceiving information about the environment and thus make decisions on where to walk to, etc.

You will use an ultrasonic sensor that will measure the distance between nearby objects and a passive buzzer (an electronic component) to make audio tones that will alert the user that an obstacle is in the user’s way.

Examples of similar projects about making an electronic walking cane are described in [13] and [14].

1. Define what are the usability goals and main task for the users and the “electronic” walking cane.

2. Develop a low-fidelity prototype of the auditory interface (a visual layout) made in Fritzing. Fritzing is an open-source computer-aided design (CAD) software that supports the design of electronic circuits and hardware, such as Arduino applications. You can download Fritzing from [21]. I’m going to explain how to use Fritzing in class. Also, a tutorial on Fritzing is shown in [24].

3. Connect the ultrasonic sensor to the breadboard using 4 wires. Connect the sensor’s “Vcc” pin to pin “5V” of the Arduino. Connect the sensor’s “Trig” pin to pin no. 12 of the Arduino. Connect the sensor’s “Echo” pin to pin no. 11 of the Arduino. Connect sensor’s “Gnd” pin to pin “GND” of the Arduino.

4. Connect the buzzer to the breadboard. Insert one leg of the 100 Ohm resistor to the breadboard’s rail where the buzzer’s positive pin (its top shows a “+” sign) is inserted in. Insert the other leg of the resistor to another rail of the breadboard. Insert a wire to that leg’s rail and to pin no. 4 of the Arduino. Now, connect a wire from the other leg of the buzzer to the pin “GND” of the Arduino.

5. Download from the CMS a file called “walkingcane.ino” and open it in the Arduino IDE. Verify and send it (the source code) to the Arduino, for controlling the buzzer and the sensor.

6. Attach the Arduino Uno and the circuit to the provided bamboo stick using tape.

7. Now, do a quick test of the walking cane. Put some objects around and move the walking cane back and forth around the objects to see if the sensor can detect them. The USB cable may be short so be careful.

8. Improve the auditory UI design. Discuss how the team can improve the design of the walking cane. Do you need to change the pitch (frequency) of the tone? Do you think adding a repetitive pattern of tones will alert the user better? Do you think the buzzer’s tone is annoying? Modify your Arduino code and test some alternatives.

9. You will conduct a usability testing method called “SUS questionnaire”. Invite member(s) from other teams to test your electronic walking cane. The main task for them in the test is to “walk” around with your walking cane and put them objects around to see if the circuit can detect them. Let the user hear the audio tones, etc. You may ask the participant to close his/her eyes while testing the cane. Be careful, the USB cable is short! After the test, ask the user to fill out the SUS questionnaire. You will be provided with copies of it. You will need to grade the questionnaire. You can download an Excel file from the CMS for that, called “Satori-SUS-Calculator.xls”. Just fill out the 10 scale positions from the questionnaire and the Excel file will give you a usability value from 50 (very bad usability) to 100 (excellent usability).

The whole electronic circuit is shown in Fig. 5.

References used in this in-class activity are shown in [15]-[19].
APPENDIX II

The Technology Acceptance Model Version 2 questionnaire is shown in Fig. 6. Each item includes a 7-point Likert scale.

<table>
<thead>
<tr>
<th>System-Module microcontroller-based</th>
<th>1-strongly disagree</th>
<th>7—strongly agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intention to Use</td>
<td>1. Assuming I have access to the system, I intend to use it.</td>
<td>7. I intend to use the system.</td>
</tr>
<tr>
<td>Perceived Usability</td>
<td>2. Given that I have access to the system, I predict that I would use it.</td>
<td>8. I find the system easy to use.</td>
</tr>
<tr>
<td>Perceived Usefulness</td>
<td>3. Using the system improves my performance in my activity as student.</td>
<td>9. I find the system to be useful in my activity as student.</td>
</tr>
<tr>
<td>Subjective Norm</td>
<td>4. Using the system reduces any effectiveness in my activity as student.</td>
<td>10. I find it easy to get the system to do what I want it to do.</td>
</tr>
<tr>
<td>Valence</td>
<td>5. Feeling in control of the system is voluntary.</td>
<td>11. People who influence my behavior think that I should use the system.</td>
</tr>
<tr>
<td>Efficacy</td>
<td>6. Although it might be helpful, using the system is certainly not compulsory in my activity as student.</td>
<td>12. People who are important to me think that I should use the system.</td>
</tr>
<tr>
<td>Image</td>
<td>7. People in my school who use the system have more prestige than those who do not.</td>
<td>13. I like the way the system looks.</td>
</tr>
<tr>
<td>Relevance</td>
<td>8. People in my school who use the system have a high profile.</td>
<td>14. The way the system is a symbol of my school activities as student.</td>
</tr>
<tr>
<td>Output Quality</td>
<td>9. In my activity as student, usage of the system is important.</td>
<td>15. The quality of the system is high.</td>
</tr>
<tr>
<td>Benefit Dimensionality</td>
<td>10. In my activity as student, usage of the system is relevant.</td>
<td>16. The quality of the system is high.</td>
</tr>
<tr>
<td>Efficacy</td>
<td>11. I have no difficulty telling others about the results of using the system.</td>
<td>17. I believe I could communicate to others the consequences of using the system.</td>
</tr>
<tr>
<td>Efficacy</td>
<td>12. I have no problems with the quality of the system’s output.</td>
<td>18. I believe I could communicate to others the consequences of using the system.</td>
</tr>
<tr>
<td>Efficacy</td>
<td>13. I have no difficulty explaining why using the system may or may not be beneficial.</td>
<td>19. I have no difficulty explaining why using the system may or may not be beneficial.</td>
</tr>
</tbody>
</table>

Fig. 6 TAM2 questionnaire

ACKNOWLEDGMENT

Miguel Garcia-Ruiz thanks the research assistants who helped setting up and testing the equipment and electronic components used in the HCI course and Algoma University’s Gaming Technology Laboratory.

REFERENCES

